Math 241 Winter 2023 Lecture 13

Feb 19-8:47 AM

Solving Trig. Equations:
Recall from algebra, we can Solve
$\left\{\begin{array}{l}x+y=6 \\ x-y=2\end{array}\right.$ by graphing method.
$x+y=6 \quad x-y=2$

x	$\frac{y}{x}$	
0	$\frac{6}{x}$	$\frac{y}{0}$
6	0	-2
2	0	

Solve

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
2 x+3 y=6 \\
y=\frac{-2}{3} x-4
\end{array} \Rightarrow\right. \text { NOS } \\
2 x+3 y=6 \quad y=\frac{-2}{3} x-4
\end{array}\right\} \begin{array}{ll}
\left.\frac{x}{0} \frac{y}{3} \right\rvert\, 0 & y=m x+b \\
\frac{m}{3}=\frac{2}{3}, Y \text { Int }
\end{array}
$$

$$
\begin{aligned}
& \begin{cases}y=\sin x & \text { No } \\
y=2 & \text { Solution }\end{cases} \\
& \begin{cases}y=\sin x & \vdots \\
y=1 & \text { Solution } \\
x=\frac{\pi}{2}\end{cases}
\end{aligned}
$$

we get infinite \# of solution if we graph more periods. General Solution

$$
x=\frac{\pi}{2}+2 n \pi
$$

$$
x=\frac{\pi}{2}+n
$$

n is any integer.

Solve $2 \operatorname{Sin} x-\underbrace{1=0}_{\longrightarrow}$

$$
\begin{array}{r}
2 \sin x=1 \\
\sin x=\frac{1}{2}
\end{array}
$$

what is my R.A.? $30^{\circ}, \frac{\pi}{6}$
QI $x=\frac{\pi}{6}+2 n \pi$

Jan 25-7:15 AM

Solve

$$
\begin{array}{lll}
2 \sin x+\sqrt{2}=0 \\
2 \sin x=-\sqrt{2} & 0 & \frac{\pi}{2} \\
\sin x=\frac{-\sqrt{2}}{2} & -1 &
\end{array}
$$

what is the Ref. Angle? QIII

$$
45^{\circ}, \frac{\pi}{4}
$$

$$
\begin{aligned}
x & =\pi+R A+2 n \pi \\
& =\pi+\frac{\pi}{4}+2 n \pi
\end{aligned}
$$

QIV
$x=2 \pi-R A+2 n \pi$ $x=\frac{5 \pi}{4}+2 n \pi$
$x=2 \pi-\pi / 4+2 n \pi$
$x=\frac{7 \pi}{4}+2 n \pi$ General Solutions

$5 \frac{\pi}{4}=225^{\circ}$	$x=225^{\circ}+360^{\circ} \cdot n$
$\frac{7 \pi}{4}=315^{\circ}$	$x=315^{\circ}+360^{\circ} \cdot n$

Solve $2 \cos x-1=0$
what is the RA? $60^{\circ}, \frac{\pi}{3}$

QI

$$
\begin{aligned}
& x=R A+2 n \pi \\
& x=\frac{\pi}{3}+2 n \pi \\
& x=60^{\circ}+360^{\circ} \cdot n
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solve } \tan x-1=0 \\
& \quad \tan x=1 \\
& \text { R.A. } \rightarrow \frac{\pi}{4}, 45^{\circ} \\
& x=\text { R.A. }+n \pi \\
& x=\frac{\pi}{4}+n \pi
\end{aligned}
$$

Jan 25-7:44 AM

Arguement of
Trig. Function \Rightarrow Arg.
QI \quad Arg. $=R \cdot A .+n \cdot$ period
QII Arg. $=\pi-R . A .+n \cdot$ Period
QIII Arg. $=\pi+$ RA. $+n$. Period
QIV \quad Arg. $=2 \pi-$ RA. $+n$. Period
then Solve for the Variable

Solve $2 \sin 2 x-\underset{\rightarrow}{1}=0$
$2 \sin 2 x=1$
$\sin 2 x=\frac{1}{2}$
R.A. 30°

QI $\quad 2 x=30^{\circ}+n \cdot 360^{\circ} \rightarrow x=15^{\circ}+n \cdot 180^{\circ}$
QII. $2 x=180^{\circ}-30^{\circ}+n \cdot 360^{\circ}$

$$
\begin{aligned}
& 2 x=180^{\circ}-30+n \cdot 300 \\
& 2 x=150^{\circ}+n \cdot 360^{\circ}+x=75^{\circ}+n \cdot 180^{\circ}
\end{aligned}
$$

Solve $2 \cos \frac{x}{2}+\sqrt{2}=0$

$$
\begin{array}{rll}
2 \cos \frac{x}{2}=-\sqrt{2} & \text { QII } & \text { Arg. }=180^{\circ}-R A+n \cdot \text { Period } \\
\cos \frac{x}{2}=-\frac{\sqrt{2}}{2} & & \frac{x}{2}=180^{\circ}-45^{\circ}+n \cdot 360^{\circ} \\
\text { R.A. } \rightarrow 45^{\circ} & & \frac{x}{2}=135^{\circ}+n \cdot 360^{\circ} \\
& & x=270^{\circ}+n \cdot 720^{\circ}
\end{array}
$$

QIII Arg. $=180^{\circ}+$ R.A. $+n$. Period

$$
\begin{array}{cc}
\frac{x}{2}=180^{\circ}+45^{\circ}+n \cdot 360^{\circ} \\
\frac{x}{2}=225^{\circ}+n \cdot 360^{\circ} & x=450^{\circ}+n \cdot 720^{\circ} \\
x=90^{\circ}+360^{\circ}+n \cdot 20^{\circ} \\
360^{\circ}+n \cdot 720^{\circ}= & x=90^{\circ}+(2 n+1) \cdot 360^{\circ} \\
360^{\circ}+2 n \cdot 360^{\circ}= &
\end{array}
$$

$$
\csc \frac{x}{3}=\frac{2 \sqrt{3}}{3} \Rightarrow \sin \frac{x}{3}=\frac{3}{2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3 \sqrt{3}}{2 \cdot 3}=\frac{\sqrt{3}}{2}
$$

Solve $\sin \frac{x}{3}=\frac{\sqrt{3}}{2}$
R.A. $\rightarrow \frac{\pi}{3}$

QI, QII

QI

$$
\begin{aligned}
\text { Ang. } & =R \cdot A \cdot+n \cdot \text { Period } \\
\frac{x}{3} & =\frac{\pi}{3}+n \cdot 2 \pi \\
x & =\pi+n \cdot 6 \pi=(6 n+1) \pi
\end{aligned}
$$

QII \quad Ang. $=\pi-$ R.A. $+n \cdot$ Period

$$
\begin{aligned}
& \frac{x}{3}=\pi-\frac{\pi}{3}+n \cdot 2 \pi \\
& x=3 \pi-\pi+n \cdot 6 \pi=2 \pi+n \cdot 6 \pi=(6 n+2) \pi
\end{aligned}
$$

Solve $\operatorname{Sin} 2 x-1=0$ in the interval $[0,2 \pi)$.

$$
\begin{aligned}
& \sin 2 x=1 \\
& \text { R.A. } \frac{\pi}{2} \quad \text { Ang. }=\text { R.A. }+n \cdot 2 \pi \\
& 2 x=\frac{\pi}{2}+n \cdot 2 \pi \\
& x=\frac{\pi}{4}+n \cdot \pi \\
& \begin{array}{l}
n=0 \rightarrow x=\frac{\pi}{4} \\
n=1 \rightarrow x=\pi / 4+\pi
\end{array} \Rightarrow \frac{\pi}{4}, \frac{5 \pi}{4} \\
& n=2 \rightarrow x \geqslant \frac{\pi}{4}+2 \pi \\
& \left\{\frac{\pi}{4}, \frac{5 \pi}{4}\right\}
\end{aligned}
$$

Jan 25-8:48 AM
$(\tan 2 x-1)(\tan 2 x+\sqrt{3})=0$, Solve in the interval $[0,2 \pi)$
$\tan 2 x-1=0$
$\tan 2 x=1$
R.A. $\frac{\pi}{4}$

QI, QIII
QI: \quad Arg $=$ R.A. $+n \cdot \pi$

$$
\begin{array}{ll}
2 x=\frac{\pi}{4}+n \cdot \pi & n=3 \rightarrow x=\frac{\pi}{8}+\frac{3 \pi}{2}=\frac{13 \pi}{8} J \\
x=\frac{\pi}{8}+\frac{n \pi}{2} & n=4 \rightarrow \frac{\pi}{8}+\frac{4 \pi}{2}
\end{array}
$$

QIII Ang. $=\pi+R . A .+n \cdot \pi \quad n=0 \rightarrow x=\frac{5 \pi}{8}$ Repa.id

$$
\begin{array}{rlrl}
2 x & =\pi+\frac{\pi}{4}+n \cdot \pi & n=1 \rightarrow x=\frac{9 \pi}{8} \text { Repeated } \\
2 x & =\frac{5 \pi}{4}+n \pi & & n=2 \rightarrow x=\frac{13 \pi}{8} \\
x & =\frac{5 \pi}{8}+\frac{n \pi}{2} & & n=3 \rightarrow \frac{11 \pi}{8}
\end{array}
$$

$$
\begin{aligned}
& \tan 2 x+\sqrt{3}=0 \text { QII: } \\
& \tan 2 x=-\sqrt{3} \quad \text { Arg. }=\pi-\text { R.A. }+n \cdot \text { Period } \\
& \text { R.A. } \pi / 3 \\
& \text { QII, QIV } \\
& 2 x=\pi-\frac{\pi}{3}+n \cdot \pi \\
& 2 x=\frac{2 \pi}{3}+n \pi \\
& \text { QIV } \\
& \text { Ang. }=2 \pi-R A+n \cdot \text { Period } x=\frac{\pi}{3}+\frac{n \pi}{2} \\
& 2 x=2 \pi-\frac{\pi}{3}+n \cdot \pi \quad n=0 \rightarrow x=\frac{\pi}{3} \\
& 2 x=\frac{5 \pi}{3}+n \cdot \pi \quad n=1 \rightarrow x=\frac{5 \pi}{6} \\
& x=\frac{5 \pi}{6}+n \cdot \pi / 2 \quad n=2 \rightarrow x=\frac{4 \pi}{3} \\
& n=0 \rightarrow x \quad n=3 \rightarrow x=\frac{11 \pi}{6} \\
& n=1 \quad \forall x \\
& n=4
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Solve } \\
\text { over } \\
\sin \frac{1}{2} \theta=-\operatorname{Cos} \frac{1}{2} \theta
\end{array} \\
& {\left[\begin{array}{l}
\text { over } \\
{\left[0^{\circ}, 360^{\circ}\right)}
\end{array} \text { Divide by } \cos \frac{1}{2} \theta\right. \text { both sides }} \\
& \begin{array}{r}
\frac{\sin \frac{1}{2} \theta}{\cos \frac{1}{2} \theta}=-1 \Rightarrow \tan \frac{1}{2} \theta=-1 \\
\text { R.A. } \rightarrow 45^{\circ}
\end{array} \\
& \text { QII } \\
& \text { QII, QV } \\
& \begin{array}{ll}
\text { Ang. }=180^{\circ}-\text { RA. }+n \cdot 180^{\circ} \\
\frac{1}{2} \theta=180^{\circ}-45^{\circ}+n \cdot 180^{\circ} \\
\frac{1}{2} \theta=135^{\circ}+n \cdot 180^{\circ} \rightarrow \theta=270^{\circ}+n \cdot 360^{\circ} \\
\text { QIV } & n=0 \rightarrow \theta=270^{\circ}
\end{array} \\
& \text { Arg. }=360^{\circ}-\text { R.A. }+n \cdot 180^{\circ} \\
& \frac{1}{2} \theta=360^{\circ}-45^{\circ}+n \cdot 180^{\circ} \\
& \frac{1}{2} \theta=315^{\circ}+n \cdot 180^{\circ} \quad \theta=630^{\circ}+n \cdot 360^{\circ} \\
& \text { check } \\
& \sin \left(\frac{1}{2} \cdot 270^{\circ}\right)=-\operatorname{Cos}\left(\frac{1}{2} \cdot 270^{\circ}\right) \quad\left\{270^{\circ}\right\} \\
& \sin 135^{\circ}=-\cos 135^{\circ} \\
& \frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2} \sqrt{ }
\end{aligned}
$$

Solve $\operatorname{Sin} 3 \theta \cos \theta-\cos 3 \theta \sin \theta=2$

$$
\begin{gathered}
\sin (3 \theta-\theta)=2 \\
\sin 2 \theta=2 \\
\phi
\end{gathered}
$$

Solve

$$
\sin 6 x-\sin 2 x=0 \text { in }\left[0^{\circ}, 360^{\circ}\right)
$$

$\sin A-\sin B=2 \operatorname{Cos} \frac{A+B}{2} \operatorname{Sin} \frac{A-B}{2}$
$\sin 6 x-\sin 2 x=2 \cos \frac{6 x+2 x}{2} \sin \frac{6 x-2 x}{2}$
$2 \cos 4 x \sin 2 x=0$
$\cos 4 x \sin 2 x=0$

$$
\left.\begin{array}{ccc}
\cos 4 x=0 & \text { OR } & \sin 2 x=0 \\
90^{\circ}, 270^{\circ} & 0^{\circ}, 180^{\circ} \\
4 x=90^{\circ}+n .360^{\circ} & 2 x=0^{\circ}+n .360^{\circ} \\
x=22.5^{\circ}+n \cdot 90^{\circ} & x=n \cdot 180^{\circ} \\
4 x=270^{\circ}+n .360^{\circ} & x=180^{\circ}+n \cdot 360^{\circ} \\
x=67.5^{\circ}+n .90^{\circ} & x=90^{\circ}+n \cdot 180^{\circ} \\
\left\{0^{\circ}, 22.5^{\circ}, 67.5^{\circ}, 90^{\circ}, 112.5^{\circ}, 157.5^{\circ}, 180^{\circ}, 270^{\circ},\right. \\
202.5^{\circ}, 247.5^{\circ}, 292.5^{\circ}, 337.5^{\circ}
\end{array}\right\}
$$

Solve $\sin ^{2} 2 \theta=4-2 \cos ^{2} 2 \theta$ on $\left[0^{\circ}, 360^{\circ}\right)$
Hint: use identities to write in terms of one trig. function.

$$
\begin{gathered}
\sin ^{2} x+\cos ^{2} x=1 \\
\cos ^{2} x=1-\sin ^{2} x \\
\sin ^{2} 2 \theta=4-2\left(1-\sin ^{2} 2 \theta\right) \\
\sin ^{2} 2 \theta=4-2+2 \sin ^{2} 2 \theta \\
\sin ^{2} 2 \theta-2 \sin ^{2} 2 \theta=2 \quad-\sin ^{2} 2 \theta=2 \\
(\text { Any Real \# })^{2} \geq 0 \quad \sin ^{2} 2 \theta=-2
\end{gathered}
$$

Jan 25-9:38 AM

write $\sin 5 x \sin 9 x$ as a sum.
use $\sin u \sin v=\frac{1}{2}[\cos (u-v)-\cos (u+v)]$

$$
\begin{aligned}
\begin{aligned}
& \sin 5 x \sin 9 x= \frac{1}{2}[\cos (5 x-9 x)-\cos (5 x+9 x)] \\
&=\frac{1}{2}[\cos (-4 x)-\cos (14 x)] \\
& \cos (-\alpha)= \\
& \cos \alpha
\end{aligned} & =\frac{1}{2}[\cos 4 x-\cos 14 x]
\end{aligned}
$$

write $\operatorname{Cos} 3 x \sin 7 x$ as a Sum.
$\cos u \sin v=\frac{1}{2}[\sin (u+v)-\sin (u-v)]$
$\cos 3 x \sin 7 x=\frac{1}{2}[\sin 10 x-\sin (-4 x)]$

$$
\sin (-\alpha)=-\sin \alpha=\frac{1}{2}[\sin 10 x+\sin 4 x]
$$

write $\sin 10 x+\sin 4 x$ as product

$$
\begin{aligned}
\sin x+\sin y & =2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \\
\sin 10 x+\sin 4 x & =2 \cdot \sin \frac{10 x+4 x}{2} \cos \frac{10 x-4 x}{2} \\
& =2 \sin 7 x \cos 3 x
\end{aligned}
$$

Write as product
$\cos 12 x-\cos 6 x$
$\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$

$$
\cos 12 x-\cos 6 x=-2 \sin 9 x \sin 3 x
$$

$\operatorname{Sec} x=\frac{3}{2}, 270^{\circ}<x<360^{\circ} \Rightarrow 135^{\circ}<\frac{x}{2}<180^{\circ}$ find $\cos \frac{x}{2}$
$\frac{x}{2}$ is in QII
Cos is -

$$
\operatorname{Cos} \frac{x}{2}= \pm \sqrt{\frac{1+\operatorname{Cos} x}{2}}
$$

$$
\begin{gathered}
=-\sqrt{\frac{1+\frac{2}{3}}{2}} \\
\angle C D=3
\end{gathered}
$$

$$
=-\frac{\sqrt{30}}{\sqrt{36}}=-\frac{\sqrt{30}}{6}
$$

$\sin \theta=\frac{1}{7}, \quad \theta$ is in $Q \Pi$
Find $\sin 2 \theta$

$$
\sin 2 \theta=2 \sin \theta \cos \theta
$$

$$
\begin{aligned}
& 90^{\circ}<\theta<180^{\circ} \\
& 180^{\circ}<2 \theta \frac{7}{1 \theta} \\
& \frac{1}{48} \\
&-\frac{2 \sqrt{48}}{49}=\frac{-2 \cdot \sqrt{16} \sqrt{3}}{49} \\
&=\frac{-8 \sqrt{3}}{49}
\end{aligned}
$$

$$
=2 \cdot \frac{1}{7} \cdot \frac{-\sqrt{48}}{7}=\frac{-2 \sqrt{48}}{49}=\frac{-2 \cdot \sqrt{16} \sqrt{3}}{49}
$$

find the exact value

$$
\begin{aligned}
& \tan \left(2 \sin ^{-1} \frac{3}{5}\right)=\tan 2 \alpha \\
& \text { Let } \alpha=\sin ^{-1} \frac{3}{5} \\
& \sin \alpha=\frac{3}{5}=\frac{2 \tan \alpha}{1-\tan { }^{2} \alpha}=\frac{2 \cdot \frac{3}{4}}{1-\left(\frac{3}{4}\right)^{2}} \\
& \text { QI }{ }^{\alpha}=\frac{5}{4}=\frac{\frac{3}{2}}{1-\frac{9}{16}} \\
&=\frac{24}{7}
\end{aligned}
$$

find exact value of

$$
\begin{aligned}
& \tan \left(\frac{1}{2} \cos ^{-1} \frac{\alpha}{3}\right)=\tan \frac{\alpha}{2}=\frac{\sin \alpha}{1+\cos \alpha} \\
& \begin{array}{l}
\alpha=\cos ^{-1} \frac{\alpha}{3} \\
\cos \alpha=\frac{2}{3} \\
2
\end{array} \sqrt{\frac{3}{5}} \frac{\frac{\sqrt{5}}{3}}{1+2 / 3}=\frac{\sqrt{5}}{5} \\
& \text { LCD }=3
\end{aligned}
$$

QI

Jan 25-11:04 AM
verify
$\cos ^{4} x-\sin ^{4} x=\cos 2 x$
Hint: $A^{2}-B^{2}=(A+B)(A-B)$

$$
A^{4}-B^{4}=\left(A^{2}+B^{2}\right)\left(A^{2}-B^{2}\right)
$$

$\cos ^{4} x-\sin ^{4} x=(\underbrace{\cos ^{2} x+\sin ^{2} x})\left(\cos ^{2} x-\sin ^{2} x\right)$

Hint: $A^{6}=\left(A^{2}\right)^{3}$

$$
A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)
$$

$\sin ^{6} x+\cos ^{6} x=$
$\left(\sin ^{2} x\right)^{3}+\left(\cos ^{2} x\right)^{3}=$
$\left(\sin ^{2} x+\cos ^{2} x\right)\left(\left(\sin ^{2} x\right)^{2}-\sin ^{2} x \cos ^{2} x+\left(\cos ^{2} x\right)^{2}\right)=$
$\sin ^{1} x-\sin ^{2} x\left(1-\sin ^{2} x\right)+\left(1-\sin ^{2} x\right)^{2}=$
$\sin ^{4} x-\sin ^{2} x+\sin ^{4} x+1-2 \sin ^{2} x+\sin ^{4} x=$
$3 \sin ^{4} x-3 \sin ^{2} x+1=$
$3 \sin ^{2} x\left(\sin ^{2} x-1\right)+1=$
$3 \sin ^{2} x \cdot-\cos ^{2} x+1=$
$4\left(1-3 \sin ^{2} x \cos ^{2} x\right)=4-12 \sin ^{2} x \cos ^{2} x$

$$
\begin{aligned}
& =4-3 \cdot 4 \sin ^{2} x \cos ^{2} x \\
& =4-3(2 \sin x \cos x)^{2} \\
& =4-3 \sin ^{2} 2 x
\end{aligned}
$$

